skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohiuddin, Sayed_Golam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Metabolic inhibitors are known to exhibit complex interactions with antibiotics in bacteria, potentially acting as antagonists by inducing cell dormancy and promoting cell survival. However, the specific synergistic or antagonistic effects of these inhibitors depend on factors like their mechanisms of action, concentrations, and treatment timings, which require further investigation. In our study, we systematically explored the synergistic interactions of various metabolic inhibitors—such as chloramphenicol (a translation inhibitor), rifampicin (a transcription inhibitor), arsenate (an ATP production inhibitor), and thioridazine (a PMF inhibitor)—in combination with ofloxacin. We conducted this investigation under pre-, co-, and post-treatment conditions, employing a wide concentration range and utilizing four distinct synergy models. Chloramphenicol, rifampicin, and arsenate consistently showed minimal synergy scores, indicating a notable antagonistic relationship with ofloxacin across all models and conditions. In contrast, thioridazine consistently demonstrated elevated synergy scores, especially in pre- and co-treatment scenarios, albeit its synergy decreased during post-treatment conditions. When multivariable linear regression analyses were used for all drugs and conditions examined, a correlation between the synergy of thioridazine and its ability to suppress cellular energy metabolism became evident, underscoring the potential utility of certain metabolic inhibitors as effective anti-persistence adjuvants. 
    more » « less